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The hydrodynamic stability of a rapidly elongating, viscous liquid jet such as 
obtained in shaped charges is presented. The flow field depends on three characteristic 
timescales associated with the growth of perturbations (due esaentially to the effect 
of the surface tension), the elongation of the jet, and the inward diffusion of vorticity 
from the free surface, respectively. The latter process introduces a time lag resulting 
in the current values of the free-surface perturbation and its time derivative being 
a function of their past history. Solutions of the integro-differential equation for the 
evolution of disturbances exhibit a novel dual role played by the viscosity : besides 
the traditional damping effect it is associated with a destabilizing mechanism in the 
elongating jet. The wavelength of maximum instability is also a function of time 
elapsed since the jet formation, longer wavelengths becoming dominant at later 
stages. Understanding of these instability processes can help in both promoting and 
delaying instability as required by specific applications. 

1. Introduction 
In a recent study (Frankel & Weihs 1985, hereinafter referred to as FW), the 

stability of an inviscid jet with linearly increasing axial velocity was examined. Such 
jets appear in shaped charges, as well as for fibre spinning and emulsification 
processes. While the latter applications can conceivably be studied under creeping- 
flow assumptions (Tomotika 1936; Mikami, Cox & Mason 1975) the shaped-charge 
jet moves at velocities of the order of lo3 m/s and internal axial velocity gradients 
of the order of lo4 s-l, so that the effects of inertia have to be included. 

The superior penetration capabilities of hollow and shaped charges have been 
recognized for almost 200 years. The first quantitative analysis of the hydro- 
dynamical principles involved and the first performance predictions were produced 
by Birkhoff et a2. (1948) during World War 11. One of the main conclusions of these 
studies was that penetration of solid targets would increase linearly with jet length 
at  the point of impact - this being the motivation for forming elongating jets in the 
first place. Thus, for a given charge, increasing the distance from the target at jet 
formation should increase penetration. However, beyond a certain distance the 
penetration actually decreases. This has been shown to be a result of hydrodynamic 
instability of the jet (FW). 

In the present paper the solution in FW is generalized to include the effect of liquid 
viscosity. We thus study the respective influence of surface tension, inertia and 
viscosity of the liquid, and the strain rate in the jet, on the temporal evolution of 
infinitesimal perturbations in the unsteady basic elongational flow. 

In the applications mentioned previously the growth of perturbations is a key 
factor: non-uniformity and break-up of the jet constitutes one of the major 
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FIGURE 1. Schematic description of the stretching jet. 

limitations on the penetration capability of shaped charges, and is to be avoided in 
polymer-fibre-spinning processes. In optical-fibre manufacturing, any deviations 
from a perfect circular cylindrical shape (due to growth of perturbations) tend to 
increase undesirable light scattering and are thus detrimental to the optical quality 
of the product. 

In $2 we describe the flow field and the stability problem. In $3 we obtain the 
‘equation of motion ’ for the free surface of the perturbed jet. This equation contains 
integrals over the vorticity distribution in the jet. Having determined the relation 
between the vorticity distribution and the free-surface perturbations in $4, we find 
the evolution equation for the amplitude of perturbations in $5. The solutions of this 
equation are presented in $6. We describe the temporal evolution of the free-surface 
perturbations and the vorticity distribution within the jet, and the dependence of the 
amplification on the wavelength of perturbations. The general solution, which is 
valid for any combination of the parameters, enables establishing of the range of 
validity of the various approximations (‘creeping flow ’, ideal jet, etc.). 

2. Formulation of the problem 
2.1. The basic j b w  j k l d  

The velocity field in the unperturbed stretching jet is one of an unsteady uniaxial 
extension (FW) : 

where r ,  z are cylindrical coordinates, Uo and Wo are, respectively, the radial and 
axial velocity components, and K is the axial velocity gradient at t = 0 (figure 1). 
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As a result of the stretching, the jet radius decreases with time as 

a0 

(Kt + 1);'  
a(t) = 

where a, is the radius at t = 0. The pressure distribution within the unperturbed 
jet is 

3 pK2a2 I - -  +--- CT PK 
p o = 8 ( K t + l ) 2 (  z )  a K t + l '  (3) 

where p, p and Q are, respectively, the density, viscosity and coefficient of surface 
tension. The above expression is obtained via integration of the Navier-Stokes 
equation in conjunction with the free-surface dynamic boundary condition 

au, 
Po = -+2p-, r = a. 

a ar (4) 

2.2. Perturbation equations 
It has been demonstrated in FW that only axisymmetric perturbations can be 
monotonically divergent for an ideal jet. We thus assume the perturbed flow field to 
be axisymmetric in the present case also. The velocity components are 

u =  u,+u, w = w,+w, (5% b )  

P = P,+p. (6) 

and the pressure distribution is 

u and w are, respectively, the radial and axial velocity perturbations, and p is the 
pressure perturbation. Substitution of the velocity and pressure fields into the 
continuity and Navier-Stokes equations, and subtraction of the terms which belong 
to the basic solution, lead to 

i a  aw 
--(mL)+--0, 
r ar a2 

(7) 

neglecting second-order terms in the velocity perturbations. Cross-differentiating (8)  
and (9) and subtracting, we eliminate p end obtain 
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< = (au/az)- (awlat-) is the vorticity and v = p / p  is the kinematic viscosity. In terms 
of the Stokes stream function, (7)-(9) can be written as (10) and 

Some further simplification is achieved through a transformation to  an approximate 
Lagrangian description where (FW) 

(13a, b) 
The coefficients in the equations which result from changing the independent 

variables in (9) and (12) by the transformation (13) are functions of ro and t only. We 
can thus assume standing-wave solutions of the form 

g = [ ( T o ,  t )  sin k, zo (14) 

and $ = $(ro, t )  sin k, z,, (15) 

r = r,(Kt + l)-i, z = z,(Kt+ 1) 

where 5 = (Kt+ 1) c. k ,  is the wavenumber a t  t = 0 of an axial perturbation which 
stretches with the jet (and its current wavenumber at time 

i a t  a2[ i a t  k; obtains for [ and @ 
---v ----- 
K t + l  at - [ar: roaro (Kt+l)3c]  

and 

t is k,(Kt+ l ) - I ) .  One 

(16) 

Equations (16) and (17) can be written in non-dimensional form as 

and 

where ro = a,r,*, zo = a,z:, T = Kt+ 1, Q =  Ka,c*, 

$ = Kai $*, u = Ka,  u*, w = Ka, w*, p = pK 2 a,p 2 *, 
and R = Ka:/v is the ratio between inertial and viscous effects or, equivalently, 
between the respective timescales for vorticity diffusion (a; /v)  and the jet elongation 
(l /K),  and 

ko a, 
(Kt  + 1); X =  

is the non-dimensional instantaneous wavenumber. 

the various quantities are non-dimensional. 
For simplicity, the asterisks are omitted in the following. Unless otherwise stated 

The kinematic boundary condition on the jet surface is 

Db ab 
Dt at 

U = - = -+u - V b  at r = b, 

where r = b ( z , t )  is the free surface of the perturbed jet. 
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The dynamic boundary conditions are 

zero tangential stress : rt = 0 at r = b, 

and 7, = -CT -+- at r = b, (d, $,) 
i.e. the normal stress is balanced by the effect of surface tension. R, and R, are the 
(dimensional) principal radii of curvature. 

Assuming axisymmetric standing-wave perturbations of the free surface (as in (14) 
and (15)) 

Substituting (5 )  and (6) in conjunction with (23) and linearizing we obtain, for 
ro = 1, 

b(z,,t) = a(t)[l+?)(t) cosk,zoa,]. (23) 

(24) 
a(t) u z - f ( 7 )  cos k, 2, a, 
a0 

and writing 7, and 7t in terms of the stress tensor in cylindrical coordinates, 

where 

1 au ,aw X 
7 aZ, ar, 
--+7%- = -3-7(7) 7 sink,zoa,, 

expresses the relative effects of the surface tension and the inertia of the jet. T is also 
the ratio between the squares of the capillary and elongational timescales ((alpat); 
and K-' respectively). 

In addition to  the free surface-conditions (24)-(26), axial symmetry and the 
requirement of a non-singular solution at r = 0 result in 

r o = O :  u=O, (274  

aw 

a', 
r , = O :  - = O .  

3. Evolution of perturbations of the jet surface 
The general solution of (17) is 

+ roK1(~rO) [B(r)--f [l,(xrA) &A9 7 )  d~;], (28) 

where I, and K ,  are the first-order modified Bessel functions of the first and second 
kind respectively. 
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The velocity components in non-dimensional Lagrangian form are 

i a$ a$ 
7b0 aZo ’ ro avo 

u=-- w=---* 

The pressure perturbation is obtained by integration of (8) and (9). In the 
Lagrangian non-dimensional variables it is 

Substitution of the expressions (28) and (29) into the boundary conditions (24)- 
(26) leads to a linear system of three equations for the three unknown functions: 
t ( r0 ,7) ,  ~ ( 7 )  and 4 7 ) .  The latter can be eliminated between the equations that 
correspond to the kinematic boundary condition and the condition for the tangential 
stress on the free surface. In addition we obtain the relation 

between the intensity of the ‘vorticity source’ on the free surface and the 
perturbation amplitude. 

A free surface of a viscous fluid is a vorticity source since an irrotational flow 
cannot in general satisfy the requirement that the tangential stress vanishes there. 
(The basic flow is an exception which is due to the circular cylindrical shape of the 
unperturbed jet.) It is a weaker source than a solid body where the failure to satisfy 
the ‘no slip’ condition results in a’finite discontinuity in the velocity, which 
corresponds to a vortex sheet of infinite intensity. In the case of a free surface the 
irrotational flow involves only a finite discontinuity in the tangential stress, which 
forms a vortex sheet of finite intensity (Batchelor 1967, p. 364). 

Substitution of the expression for A ( T )  in the equation that corresponds to the 
dynamic boundary condition for the normal stress on the free surface, making use of 
the relation K o ( ~ ) I l ( ~ ) + I o ( ~ ) K l ( ~ )  = l/x (Abramowitz & Stegun 1965, p. 37-9, we 
obtain an equation for ~ ( 7 )  which includes the term 

The equation thus obtained can be simplified considerably by replacing the time 
employing (18a) and derivative ac//a7 in the above term. To this end we express 

integrate by parts twice in conjunction with the conditions 

a c  
To+O ro+o 39.0 
l ime= 0, lim - = O 

which result from (27). Eventually we find that 
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Substitution along with (30) for c( 1,7) leads to the equation of motion for the free 
surface of the perturbed jet : 

where I, = I , (x) ,  I ,  = Il(x). 
The last two terms on the left-hand side of (31) include the contribution of 

vorticity distribution to the rate of energy dissipation in the jet (cf. Lamb 1932, 
p. 581). 

For an inviscid jet v = 0 and R-t  00 and the equation for the vorticity (18a) 
assumes the form = 0. Also, in this case, the dynamic boundary condition (21) 
is satisfied identically and the velocity field no longer needs to satisfy (25). 

The flow field can thus be assumed irrotational c= 0 (cf. the discussion of the 
dependence of [ on R in the next section). We thus obtain in this limit 

as obtained in FW for the perturbations of an inviscid jet. 

4. The vorticity in the perturbed jet 
C(r,, t )  is described by (18a) : 

with boundary conditions (30), 

and (33) 

which assures the regularity of the solution on the jet axis. The equation for Q is 
parabolic with initial condition 

T = 70 : Q(ro, 7 )  = g(r,). (34) 
The main difficulty in solving the above problem arises from the fact that the 

coefficients in (18a) are functions of both r, and 7.  We therefore define the new 
variables 7, and tl(r0, 71) : 



368 I .  Frankel and D. Weihs 

In these new variables one obtains 

which is to be solved in the domain 0 < ro < 1, 0 < T~ < co in conjunction with the 
boundary conditions - 

r, = 0 :  & ( r 0 , ~ , )  = 0, (37 a)  

(The relations between A(.,) and f(~), and between gl(ro) and g(ro) are readily 
obtained from the transformation (35).) 

The linearity allows for a decomposition 

Cl = c l l + G 2 9  (38) 

511(o,71) = 0, C11(1,71) =f;(T,), C11(roio) = 0, (39a, b, 4 

C12(0,71) = 0, C12(1,71) = 0, C 1 2 ( ~ 0 , 0 )  = gl(ro) (40% b, 4 

where both Cll and t12 satisfy (36). ell is the solution for the problem with a 
homogeneous initial condition 

while c12 is the solution for the problem with a homogeneous boundary condition 

4.1. The homogeneous initial condition 

Defining z1,(r0, S) = LICll(ro, T , ) ]  as the Laplace transform of Cll(ro, T, ) ,  we obtain 

where F(S) = L [ & ( T ~ ) ] .  
The inverse transforms are 

L-l[SF(S)l =&(Ti )  ‘%I), 

with $ ( T ~ )  the Dirac delta function, and 

where J ,  and J ,  are the Bessel functions of the first kind and of the zeroth and first 
order respectively, and dk,  k = 1,2 , .  . . , are the positive zeros of  J ,  (Frankel 1984). 
Equation (42b) is identical with the expression for the velocity field in a viscous 
liquid that is initially at  rest in a circular cylinder of unit radius. At 7, = O+ the 
cylinder starts rotating with unit velocity (cf. Gray, Mathews & MacRobert 1922, p. 
249 ; Goldstein 1932). el, is thus analogous to the velocity field obtained when the 
cylinder rotates with the velocity A(.,) starting from rest a t  7, = O+. 
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tll is found by substitution of (42a, b) in the convolution theorem for Laplace 
transform : 

Changing the order of integration and summation and integrating by parts, the 
expression is recast in the form 

4.2. The homogeneous boundary condition 
We consider the evolution of the vorticity field from some initial distribution &(To). 

The following solution assumes that gl(ro) satisfies Dirichlet conditions (which from 
a physical point of view does not constitute a severe restriction on the applicability 
of the resulting solution). 

An interesting case where this assumption is not satisfied is the ‘instantaneous 
vorticity source’ - i.e. the vorticity distribution that develops from a cylindrical 
vortex sheet. This case was shown to correspond to the Green-function approach, 
leading to results equivalent to the following. Assuming tlz to be representable by an 
eigenfunction series expansion we obtain 

m 

t12 = I: A, exp ( -d:71)J l (dkro) ,  
k-1 

which satisfies (36) and (40a, b). (In order to satisfy the initial condition (40c) A, are 
chosen as the coefficients in the Bessel-Fourier expansion of &(ro), hence 

m clz = 2 I: Jm exp ( -d:  71) rhJl(dk r;) gl(r;) dr;. 
k-1 J i ( d k )  

The homogeneous-boundary-condition case is analogous to the following problem : A 
viscous liquid is placed in a stationary circular cylinder. By a suitable stirring action, 
a stress distribution 7,.@ is formed, which maintains a circular flow with the velocity 
v = gl(ro). Thus tlz describes the damping of the velocity field v(ro, 71) after cessation 
of the stirring action. 

The contribution to the vorticity distribution which results from the initial 
distribution is ,independent of the evolution of the free-surface perturbations. This is 
to be anticipated since the formulation of the problem for Clz ((36) and (40a-c)) does 
not include any dependence on 7. Similar phenomena have been pointed out by 
Prosperetti in the context of surface waves on viscous liquids (1976) and the 
vibrations of drops and bubbles (1980). 
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4.3. Dependence of the vorticity distribution on R 
Substituting ell, (43)’ and f 2 ,  (44), in (38), and making use of the transformation 
(35)’ we recover 

where 

Insight into the physical phenomena involved in the evolution of the jet 

The first term on the right-hand side of (45) is independent of R.  The series that 
perturbations can be gained by studying the above vorticity field. 

appears in this term is the Bessel-Fourier expansion of 

m O < r o < l ,  
and hence 

ro = 1, (46) 

which assures that the boundary condition (30) is satisfied. 
The second term in (45) represents the distribution due to the inward diffusion of 

vorticity from the free surface. Since this diffusion process takes a finite time (for 
finite R), this term contains contributions of the ‘source intensity’f(7) a t  times 
7‘ < 7.  

The last term represents the effect of the initial distribution. As mentioned above, 
this contribution is not affected by the evolution of the surface perturbations, and it 
hence is independent off( 7 ) .  

We now examine the limiting cases : R + 0,oo : 

(i) R-tco 

assumes the form 
In this case the second term on the right-hand side of (45) vanishes and the third 

In accordance with (46) we have 

i.e. in the absence of diffusion the vorticity distribution in the interior of the jet 
remains unchanged with time, in accordance with Kelvin’s theorem. 
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(ii) R+O(K =I= 0) 

any initial vorticity distribution disappears instantaneously. 

parts twice. We thus obtain 

In this case, the last term on the right-hand side of (45) vanishes for all 7 > 7,, i.e. 

The limiting form for R+O of the second term is obtained by integrating it by 

The sum of the second series on the right-hand side is 

Consequently 

The result is identical with the one which is obtained for an elongating viscous jet 
in the ‘creeping flow’ approximation (Frankel 1984). 

Thus the vorticity distribution depends only on the instantaneous ‘source 
intensity ’f(7) on the free surface for all 7 > 7,. This is because for R = 0, the vorticity 
diffuses infinitely fast and therefore the vorticity distribution at any 7 > 7, is 
independent of its distribution at any earlier instant 7‘ < 7.  

The result can be anticipated from (18a). For any finite R this is a parabolic 
equation and hence the dependence of the current distribution on the ‘history’. As 
R+O (18a) becomes an ordinary one and the boundary conditions (30) and (33) 
suffice to determine a unique solution. This solution cannot satisfy any additional 
(initial) conditions. 

5. Evolution of perturbations 
Substituting the expressions for C(r,, 7), (45), and for f(7), (30), performing the 

integrations over the vorticity distribution in the equation of motion (31), and 
applying various relations for Bessel functions we obtain the evolution equation for 
7(7), the perturbation amplitude : 
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The series term on the left-hand side of (49) stems from the diffusion of vorticity 
inwards from the free surface. As this process requires finite time (at R + 0) ,  we 
obtain an integro-differential evolution equation. 

The vorticity distribution associated with the initial vorticity distribution is 
represented by the forcing term on the right-hand side of (49). 

Previously we showed that the evolution equation for the case of an ideal jet (FW) 
can be obtained as a limiting case of (31) for R+ a. We now consider the other limit, 
namely, R+O. 

Multiplying (49) by R,  we obtain, when R+ 0, and 7 > T,, 

where we define 

which represents the relative effects of surface tension and viscosity. The last term 
in (50) is treated like the term in (45) that led to (48). Integrating by parts twice and 
making use of various identities for Bessel functions we obtain 

which is identical with the 'creeping flow ' solution (Frankel 1984). 

dropped. This is valid provided that 
In passing from (49) to (50) the 'acceleration' term which includes ~ " ( 7 )  has been 

Rq" < 7, sq, q1 

Returning to dimensional notation the first requirement is written 

where tg is a characteristic time for the growth of perturbations. Hence it is required 
that this timescale (t,) be much larger than the timescale for the diffusion of vorticity 
(ailv). This condition guarantees that the variations in the intensity of the free- 
surface vorticity source, which are induced by the growth of perturbations, will be 
much slower than the inward diffusion process. It is thus equivalent to the conditions 
for steady Stokes equations to be valid in an unsteady flow (Rosenhead 1963, 
p. 168). 

Substituting t, -pao/a which is the characteristic time for the growth of 
perturbations in a viscous capillary jet when the inertia effect is negligible, we see 
that the above condition is equivalent to : 

1 
S < - .  b (54) 

(The requirements Rq" 4 Sq,q' are equivalent to the less stringent condition S < 1 / R .  
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Also, if in (53) we have Kt, 9 i ,  i.e. perturbation growth which is slow relative to 
the elongation of the jet, the latter condition suffices.) 

6. Results and discussion 
The integro-differential equation for r ] ( ~ ) ,  (49), has been numerically integrated by 

a predictor-corrector routine, after reformulating it as a system of first-order 
ordinary differential equations. 

In order to integrate (49) we need to specify the initial conditions for r] and q’, and 
the vorticity distribution at some initial time T ~ .  It has been verified (Frankel 1984) 
that the initial vorticity distribution has only a minor effect on the evolution of 
perturbations. We therefore confine the following discussion to the case of zero initial 
vorticity and accordingly describe the solutions of the homogeneous equation 
associated with (49). 

As in the case of an ideal jet (FW) it is found convenient to select the initial 
conditions 

7 = 70:  r] = ?j0 = 1,q’ = 0. (55) 

(No essential differences in the results occurred when other combinations were 
employed.) 

The role of the parameter T which represents the relative effects of surface tension 
and the inertia of an inviscid liquid has already been extensively studied (FW). Thus, 
in all the following examples we select T = 10, which corresponds to both effects 
being of comparable magnitude, concentrating on viscosity effects (R). The influence 
of the parameter R is examined by presenting the results for R = 0.1,1, and 10. These 
cover the range of values where the diffusion of vorticity and the elongation of the 
jet have comparable timescales. 

6.1. Evolution of perturbations 
To obtain some insight into the various mechanisms that affect the evolution of 
perturbations in the jet we compare the results of the numerical integration of the 
exact equation (49) (for the case of zero initial vorticity) with the following 
approximations : 
(a) ideal liquid jet (32); 
(b) viscous jet in the Stokes regime, (52) with S given by (51); 
(c) irrotational viscous jet. 
The latter is the solution for the equation 

obtained by deleting the last term on the left-hand side of (49). Equation (56) is 
equivalent to an assumption of irrotational flow commonly used for an approximate 
evaluation of the effect of viscosity (e.g. the damping of the oscillations of liquid 
drops or of surface waves, cf. Lamb (1932, pp. 623-625 and 6394341, respectively) in 
the case of either small viscosity or the early development of a viscous flow which 
starts as an irrotational one. 
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FIGURE 2. Comparison of the time variation of the amplitude according to the various solutions, 
for T = 10, R = 1, koao = 4, and (a)  70 = 1, ( b )  2.36: -, solution of (49); ----, irrotational 
approximation : -.-.-, ideal jet; -..._..._ , ‘creeping flow’ approximation. 

Figure 2 shows the variation of the normalized amplitude, 7 /qo ,  with the non- 
dimensional time Kt( = 7 -  1) according to the various models for R = 1, T = 10 and 
k,ao = 4. In (a) the evolution of perturbations that appear a t  70 = 1 (to = 0) is 
depicted. 

7 initially decreases in all the curves. This is because the destabilizing effect of 
surface tension is confined to non-dimensional wave-numbers x < 1. As a result of the 
disturbance wavelength growing in time, (19), all disturbances eventually enter the 
domain of destabilizing surface tension, yet perturbations with a short initial 
wavelength will grow monotonically only after a certain time has elapsed. (This 
phenomenon has been thoroughly discussed in FW for the case of an ideal liquid 
jet.) 

The exact solution (full line) shows 7 to decrease rapidly at first, oscillate once and 
then decay. The calculation in this case was terminated when 7 became less than 
lo-’ for 7 < 7,. (7, is the smallest value of 70 for which the perturbations (55) grow 
monotonically.) When 7 > 7, the solution turns unstable and thus even an 
infinitesimal residue of 7 will eventually grow, as with the other solutions shown in 
figure 2. 

The ‘ irrotational ’ and ‘ creeping ’ approximations are more strongly damped. In 
both solutions the amplitude decreases a t  a slower rate than that of the exact 
solution, there are no oscillations, the amplitude is never completely damped, and 
eventually starts growing again for some 7 > 7,. We thus conclude that none of the 
approximations are reliable in the present case. 

Figure 2 ( b )  describes the various cases for the same values of R, T ,  and koa,, but 
for 70 = 7, = 2.36. The irrotational approximation is almost indistinguishable from 
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FIGURE 3. Same aa figure 2, for R = 0.1, and (a) T~ = 1, (a) 1.62. 

the exact solution until 7 x 5. In this range of 7 the dominant phenomenon seems to 
be the growth of perturbations under the destabilizing role of aurface tension, 
whereas the role of vorticity distribution is of secondary importance. 

Both the ‘ideal ’ and ‘creeping ’ solutions exhibit a significantly faster divergence 
since in each of these models one of the mechanisms that slow down the growth of 
perturbations (the viscous damping and the inertia of the liquid respectively) is 
missing. 

For 7 > 5 (Kt > 4) we see again that the irrotational model includes a stronger 
damping influence than the exact one : as mentioned above (the paragraph following 
(31)), the vorticity distribution contributes to the rate of dissipation within the jet. 
On the other hand this distribution tends to smooth the initial velocity gradients 
near the surface of the jet, thus diminishing the rate of dissipation there. The latter 
effect thus turns out to be the stronger one under the present circumstances. 

Figure 3 describes the various solutions for R = 0.1, T = 10, koao = 4 and 
(a)  70 = 1, or (b)  70 = 7, = 1.62. The ideal solution, which has already been observed 
to constitute a poor approximation for R = 1 (cf. figure 2a), has been omitted here. 

The ‘creeping ’ model closely approximates the exact solution. Because R Q 1, the 
irrotational solution is not even qualitatively correct in (a) .  (In (b) the difference is 
smaller since all the solutions show monotonical growth.) 

Figure 4 displays the various solutions for R = 10, T = 10, koao = 4 and (a)  70 = 1, 
or ( b )  70 = 7, = 2.50. In  (a)  the ‘creeping’ solution is critically damped and is 
essentially different from all the other solutions. The rest exhibit a somewhat similar 
behaviour : in the interval 70 < 7 < 7, they all oscillate with comparable frequencies, 
yet these oscillations are moderately amplified in the ideal case whereas in the other 
two they are gradually attenuated. 
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2 4 
Kt 

5 

FKXJRE 4. Same as figure 2, for R = 10, end (a) ro = 1, (b) 2.50. 

For 7 > 7, the ideal solution shows a much more rapid divergence. Again we note 
that the irrotational solution experiences a stronger damping than the exact one. 

In ( a )  we see again that the ‘creeping’ solution deviates significantly from all 
the rest and exhibits a much sharper divergence. Its behaviour is described 
asymptotically (Frankel 1984) as 

while in an ideal jet it is slower than simple exponential (FW). 
The exact solution and the irrotational one are indistinguishable and are both 

relatively close to the ideal solution (as the viscous damping in the present example 
is much weaker than in the previous ones). 

6.2. Vorticity distribution 
The evolution of the vorticity distribution in the jet is governed by two time- 
dependent processes : 

(a) the variations of the intensity of the vorticity source on the free surface 
associated with the variations in the amplitude of perturbations (cf. (30)); 

(b) the inward diffusion from the free surface. 
Figure 5 describes the time dependence of the vorticity distribution for T = 10, 

koao = 4, T~ = 1 and (a) R = 1, ( b )  R = 0.1, (c)  R = 10. In the respective upper parts 
the perturbation amplitudes at the relevant instants of time are depicted. 

In (a) the vorticity distribution is described at the times when AT = T - T ~  = (i) 
0.005, (ii) 0.02, (iii) 0.06, (iv) 0.1, (v) 0.15, (vi) 0.3 and (vii) 0.4. 
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During the transition (i)-(ii)-(iii) we see that the source strength increases (7 
slightly decreases while y', which was 7' = 0 a t  7 = 70, becomes 7' < 0) while the 
vorticity diffuses into an increasing portion of the jet. 

In the times (iv)-(v)-(vi) the source intensity diminishes (7 decreases while q' 
gradually increases). Owing to the time lag in the diffusion process, we see that the 
vorticity in the inner portion of the jet is larger at time (v) than (iv) (although the 
source strength has meanwhile been significantly reduced). 

At time (vii) the source strength turns negative (7 < 0 , ~ '  > 0). Later on the surface 
perturbations vanish and the vorticity is damped. 

Figure 5 ( b )  displays the vorticity distribution when: A7 = 7-7,, = (i) 0.005, (ii) 
0.02, (iii) 0.2, (iv) 0.6, (v) 6, (vi) 10. 

Between points (i) and (ii) there is some increase in the source intensity (7' < 0). 
At the relatively short time (A7 = 0.02) which corresponds to (ii) there is already a 
significant vorticity even in the inner portion of the jet. 

Later on ((ii)-(iii)-(iv)) the source intensity decreases at  a moderate rate, changes 
its sign (v) and then monotonically increases in its absolute value (along with the 
divergence of the surface perturbations). 

Unlike (a ) ,  the vorticity does not die down: owing to the higher damping, the 
surface perturbations do not vanish until the range of divergence is reached. In 
addition, no time-lag phenomena (associated with the diffusion of vorticity, e.g. 
curve (v) in a )  are seen here. 

In (c) the vorticity distribution is depicted at  the instants A7 = 7-70 = (i) 0.005, 
(ii) 0.08, (iii) 0.15, (iv) 0.3, (v) 0.6, (vi) 0.8, (vii) 4. This case (R = 10) is characterized 
relative to the previous ones (R = 0.1,l) by both the oscillations in the source 
intensity (associated with oscillations of the surface perturbations prior to the 
appearance of the (monotonical) divergence, cf. figure 4a), and the significant time 
lag in the diffusion process. 

From (i) to (ii) the source intensity increases substantially (7' < 0) and vorticity 
starts penetrating the jet. At  (iii) the source strength has been greatly reduced, yet 
owing to the time lag in the diffusion process there appears a distinct maximum in 
the distribution, at ro = 0.93. 

At (iv) there is a further decrease of the source intensity which becomes negative 
(q' > 0). Owing to the damping its absolute value is smaller than at (ii). In  a major 
portion of the jet we see vorticity of the opposite,sense (positive) relative to the 
instantaneous surface source strength. 

As a result of the oscillations of the surface perturbations, the source intensity 
turns positive again (v) (with a region of negative vorticity), its strength diminishes 
(vi) (with a maximum at ro = 0.9) and later turns negative (vii). After this point the 
oscillations cease, the surface perturbations become monotonically divergent (cf. 
figure 4a) and there is a corresponding monotonical increase in the absolute value of 
vorticity . 

It is remarkable that during the time up to A7 = 0.8 (curve vi) a significant part 
of the jet (0 < ro < 0.3) remains irrotational. This is a joint effect of the oscillations 
and the relatively slow vorticity diffusion. A characteristic length for the spread of 
vorticity (e.g. Lamb 1932, p. 620) is 6 * ( v /w) i ,  where w is the frequency of 
oscillation. In the case of oscillation induced by surface tension, w x (a/pa,)i, and 
thus we obtain &/ao x (iR2T)-f x 0.19, when substituting the definitions of R and T 
and the relevant data. 
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FIGURE 6. The effect of koao on the time dependence of amplification for T = 10, R = 1.  The 
broken line shows the ‘amplification envelope ’. 

6.3. Dependence of amplification on wavelength 
Since perturbations can appear in the jet at all times 7, 2 1, the parameter k, a, does 
not correspond to a single perturbation, but rather to the whole spectrum :f 
perturbations each of which attains an instantaneous wavenumber of x = k,aO/rs. 
The total growth of perturbations which belong to the same k, a, but are introduced 
in the flow at different values of 7, can differ markedly (cf. figures 24). Thus in order 
to study the effect of the wavelength, it is desirable to select a single perturbation 
from the spectrum which corresponds to a specific value of k,a,. 

It is most interesting and convenient to examine the earliest perturbations that 
grow monotonically (with the corresponding 7, denoted by 7J. For each k,a, these 
are also the perturbations of maximal amplification. 

Figure 6 describes the dependence of the amplification of the selected perturbations 
on the non-dimensional time Kt = r -  1, for T = 10, R = 1, and several values of 
k,a,. We see that the greater the value of Lou,, the larger the corresponding 
amplification, and the later this amplification appears. Consequently there is no 
single dominant perturbation throughout the process, i.e. there is a different 
dominant perturbation at each time. 

Figure 7 shows the time variation of the maximal amplification M = lglo(r]/r]o)max 
for T = 10 and R = 0.1, 0.3, 1, 10 as well as the limiting cases R+O, XI. The curve 
R = 1 is identical with the ‘amplification envelope’ marked by the broken line in 
figure 6. The curves R = 0.1,0.3, 10 are obtained in a similar manner. The curve for 
R+ corresponds to the solution for an ideal liquid jet, (32), whereas the curve for 
R = 0 is obtained from the ‘creeping flow’ approximation, (52), with S = 0. 
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R = l O /  / 

Kt 

FIGURE 7. The effect of R on the time dependence of M ,  the maximum amplification for 
T = 10: -, R = 0.1, 0.3, 1, 10; -.-.- , R +  co ; ----, R = 0. 

The curves for R = 10 and R+ 00 are fairly close, i.e. for R = 10 the evolution of 
perturbations which appear at  T~ 2 T, in the viscous jet is very much the same as in 
an ideal jet. This observation is confirmed by figure 4 ( b )  (while part 4 a  shows marked 
differences when T~ < T ~ ) .  

An interesting feature of the flow revealed by the figure is the dual role played by 
the viscosity in the elongating jet : in addition to the usual damping effect it has also 
a destabilizing influence. We see that at long times (Kt > 2 )  M is increasing with the 
value of R, yet this trend is reversed a t  short times (Kt < 2). The amplification 
becomes largest for R = 0. Thus, at  early times viscosity has a destabilizing effect 
which accelerates the initial growth of perturbations. Later on, when the 
perturbations are rapidly diverging, the damping mechanism sets in and tends to 
slow down the growth. The relative importance of both effects increases with 
decreasing values of R. 

In order to pinpoint the physical mechanism for the destabilizing effect of 
viscosity, we consider the elongational flow in the case where both inertia and 
surface tension vanish (p = 0 and cr = 0, respectively). In the unperturbed flow 
the viscous stresses are T,, = 3pK/Kt + 1 .  The corresponding resultant axial force, 
F, = 7ca2r,, = 37ca2pK/Kt+ 1, is uniform along the jet. 
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FIQURE 8. The influence of R on the time dependence of xm, the instantaneous wavenumber of 
the dominant perturbations for T = 10. 

The combined effect of the basic velocity field and perturbed jet surface (with a(t)  
being replaced by b(z , t ) ,  (23)) results in an increment to Pz in the form of 

To see that this longitudinal distribution of the axial force is destabilizing, consider 
a thin 'slice' of the perturbed jet (normal to its axis). Owing to the above 
distribution, the resultant axial force on the slice tends to move it away from the 
nearest 'neck', and thus tends to further increase the perturbation amplitude 7. 

The conclusion that perturbations can grow due to the effect of viscosity, even in 
the absence of surface tension, can also be reached from the asymptotic result (57). 
When we substitute S = 0 we obtain v/v0 x 7 ,  i.e. an 'algebraic' growth. This is also 
supported by the behaviour of the curve R = 0 in the figure.? 

Figure 8 describes the time dependence of xm, which corresponds to the 
instantaneous perturbation of maximal growth, for T = 10 and R = 0.1, 1, 10 and co 
(ideal jet). 

All the curves show xm to decrease rapidly at small times and then tend to constant 
asymptotic values. These features have already been observed for the inviscid case 
(FW). Here we focus our attention on the R-dependence of xm. The qualitative 
difference between the respective effects of R at short and long times is again related 
to the dual role of viscosity. 

The destabilizing mechanism appears at early times. The magnitude of the 
destabilizing axial force which results from the distribution (58) is independent of the 
perturbation wavelength. Yet, the shorter this wavelength, the smaller is the liquid 

t For a given T, R+O corresponds to S = 0, i.e. the effect of surface tension becomes negligible 
relative to that of the viscosity. 
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mass that has to be accelerated by the viscous force in order to amplify the 
perturbation. Consequently xm increases with decreasing values of R.t  

At later times the effect of viscosity is essentially a damping one which is stronger 
the shorter the perturbation wavelength. Thus xm increases with increasing values 
of R. 

Again we observe only slight differences between the curves R = 10 and R + 00, 

which confirms our earlier conclusion that even for R = 10 the jet behaviour closely 
resembles that of an ideal jet. 

7. Concluding remarks 
The present solution includes both the effect of the inertia of the liquid and that 

of its viscosity, in the case of an elongating capillary jet, thereby constituting a 
generalization of previous solutions which have neglected either the inertia of the jet 
or its viscosity. 

Owing to the basic elongations1 flow the time dependence of the perturbations is 
not simply exponential. Consequently we need to solve the initial-value problem for 
the time evolution of perturbations (instead of an eigenvalue problem as in the case 
of a non-stretching jet). The evolution equation turns out to be an integro- 
differential one owing to the time lag in the diffusion of vorticity. 

The solutions of the evolution equation show that perturbations can change their 
mode of behaviour : perturbations with a short initial wavelength can start as 
oscillating ones and become monotonically divergent later on. Another result which 
is also related to the ‘stretching’ of the wavelengths of perturbations is that there is 
a different dominant perturbation a t  each instant of time. 

The effect of viscosity relative to that of the inertia of the liquid is represented by 
the parameter R-l. It is found to play a dual role : a destabilizing one and a damping 
one. The destabilizing influence manifests itself as a tendency to amplify 
perturbations in the early stages of their development which results in extending the 
wavelength range where perturbations can diverge monotonically. The damping role 
appears at  a later stage when the perturbations are rapidly diverging. Both effects 
are more pronounced the smaller the value of R and the shorter the wavelength. 

Such improved understanding of the stability of stretching jets can be applied to 
practical cases where jet breakup is to be accelerated (as in protection from shaped 
charges - Mayseless et al. 1984). 
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